Synthetic datasets for replication and teaching purposes

Image credit: announcement screenshot

Zusammenfassung

Many research applications in the social sciences require a high degree of confidentiality to protect research subjects. This hinders the need for data access to other scientists and open access standards and workflows. This is particularly true for qualitative data sources as part of Mixed Methods research designs. Synthetic datasets feature the same statistical characteristics of original datasets, while making a traceback to research subject identities impossible. This presentation briefly presents the methods involved in creating synthetic datasets and some suggestions, how such synthetic datasets could be used to allow for Open Access and transparent data access while also maintaining the required high ethical and legal data protection standards required for sensitive data collections. It also provides some ideas about using synthetic datasets as part of methods teaching.

Datum
24 Sep 2020 — 25 Sep 2020
Ort
MZES - Mannheimer Zentrum für europäische Sozialforschung
A5, 6 (section A)
68159 Mannheim
Joachim K. Rennstich
Joachim K. Rennstich
Professur Internationale Soziale Arbeit und Empirische Forschungsmethoden

Mein Forschungsfokus umfasst die langzeitliche Entwicklung hin zum digitalen Kapitalismus, Digital Literacy und innovative Lehrmethodenentwicklung und Begleitforschung.